
Smaller alignment index (SALI): a new indiatordistinguishing between ordered and haoti motionCh. SkokosResearh Center for Astronomy, Aademy of Athens, 14 Anagnostopoulou str.,GR-10673, Athens, GreeeAbstratWe apply the reently introdued method of the smaller alignment index (SALI) fordistinguishing between ordered and haoti orbits (Skokos 2001) in a 2-dimensional(2D) and a 4-dimensional (4D) sympleti map.1 IntrodutionThe distintion between ordered and haoti motion in a dynamial system is fun-damental in a large area of modern siene. This distintion is partiularly diÆultin systems with many degrees of freedom, basially beause we annot visualizetheir phase spae. So, we need fast and aurate tools to give us information aboutthe haoti or ordered harater of an orbit, mainly for dynamial systems withmore than three degrees of freedom.Many methods that try to give an answer to this problem have been devel-oped over the years. The inspetion of the onsequents of an orbit on a Poinar�esurfae of setion has been used extensively mainly for 2D systems. One of themost ommon method is the omputation of the maximal Lyapunov CharateristiNumber (LCN) (Benettin et al. 1976, Froeshl�e 1984), whih an be applied forsystems with many degrees of freedom. Another eÆient method is the frequenymap analysis developed by Laskar (Laskar 1990, Laskar et al. 1992). In reentyears new methods have been developed like the study of spetra of \short timeLyapunov harateristi numbers" (Froeshl�e et al. 1993, Lohinger et al. 1993) or\strething numbers" (Voglis & Contopoulos 1994, Contopoulos et al. 1995) andthe \spetral distane" of suh spetra (Voglis et al. 1999), as well as the studyof spetra of heliity and twist angles (Contopoulos & Voglis 1996, 1997, Froeshl�e& Lega 1998). In addition Froeshl�e introdued the fast Lyapunov indiator (FLI)(Froeshl�e et al. 1997) while Vozikis et al. (2000) proposed a method based on thefrequeny analysis of \strething numbers".Reently a new, fast and easy to ompute indiator of the haoti or orderednature of orbits, has been introdued: the smaller alignment index (SALI) (Skokos2001). In the urrent ommuniation we reall the de�nitions of the alignmentindies and show their e�etiveness in distinguishing between ordered and haotimotion, by applying them in a 2D and a 4D sympleti map.2 De�nition of the alignment indiesLet us onsider the n{dimensional phase spae of a sympleti map T, an orbit inthat spae with initial ondition P (0) = (x1(0); x2(0); : : : ; xn(0)) and a deviationvetor �(0) = (dx1(0); dx2(0); : : : ; dxn(0)) from the initial point P (0). The evolu-tion in time of the orbit and the deviation vetor are given by the mapping T andthe orresponding tangent map as follows:P (N + 1) = TP (N)�(N + 1) = ( �T�P (N))�(N) : (1)



We note that in mappings the time is disrete i.e. the number N of the iterations.In order to determine if this orbit is ordered or haoti we follow the evolutionin time of two di�erent initial deviation vetors (e.g. �1(0), �2(0)). We de�ne asparallel alignment index, the quantity:d� � k�1(N)� �2(N)k (2)and as antiparallel alignment index, the quantity:d+ � k�1(N) + �2(N)k (3)where k � k denotes the Eulidean norm of a vetor. It is obvious from the abovede�nitions that when d� = 0 the two vetors oinide and when d+ = 0 the twovetors are opposite.As explained by Voglis et al. (1999), in 2D maps the ordered motion ourson an 1D torus, the so{alled invariant urve and any two deviation vetors, aftera transient period, beome tangent to this urve, tending to oinide or beomeopposite to eah other. This means that one of the ALIs tends to zero. A simi-lar behavior appears when the orbit tested is haoti: any two deviation vetorseventually beome tangent to the most unstable nearby manifold and so one ofthe ALIs tends to zero. The transient phase needed for the vetors to take their�nal orientation has been studied by Skokos et al. (2001) and Vozikis (2001). Ifwe onsider the vetors �1 and �2 to be normalized with norm equal to 1, the twodeviation vetors tend to oinide when d� ! 0 and d+ ! 2 and tend to beomeopposite when d� ! 2 and d+ ! 0. So in 2D maps the smaller alignment index(SALI) tends to zero both for ordered and haoti orbits following however di�er-ent time rates (as it is shown in the next setion), whih allows us to distinguishbetween the two ases.On the other hand, in the ase of 4D maps the distintion between ordered andhaoti motion is even easier. In 4D maps the ordered motion ours on a 2Dtorus, on whih any initial deviation vetor beomes almost tangent after a shorttransient period. In general, two di�erent initial deviation vetors beome tangentto di�erent diretions on the torus produing di�erent sequenes of vetors, so thatboth quantities d+ and d� tend to positive values in the interval (0; 2). For haotiorbits any two initially di�erent deviation vetors tend to oinide to the diretionde�ned by the most unstable nearby manifold and hene oinide to eah other, orone vetor tends to the opposite of the other. This means than one ALI tends tozero. So, the SALI tends to zero when the orbit is haoti and to a non-zero valuewhen the orbit is ordered. Thus, the ompletely di�erent behavior of the SALIhelps us distinguish between ordered and haoti motion in 4D maps.3 Appliation of the alignment indiesFollowing Skokos (2001) we ompute the ALIs in some simple ases of ordered andhaoti orbits in sympleti maps with two and four dimensions. In partiular weuse the 2D map: x01 = x1 + x2x02 = x2 � � sin(x1 + x2) (mod 2�) (4)and the 4D map:x01 = x1 + x2x02 = x2 � � sin(x1 + x2)� �[1� os(x1 + x2 + x3 + x4)℄x03 = x3 + x4x04 = x4 � � sin(x3 + x4)� �[1� os(x1 + x2 + x3 + x4)℄ (mod 2�) (5)whih is omposed of two 2D maps of the form (4), with parameters � and �,oupled with a term of order �. All variables are given (mod 2�), so xi 2 [��; �); for



Figure 1: The evolution of the smaller alignment index SALI, with respet to the number Nof iterations of the map (a) for the 2D map (4) with � = 0:5, for the ordered orbit A withinitial onditions x1 = 2; x2 = 0 (dashed line) and for the haoti orbit B with initial onditionsx1 = 3; x2 = 0 (solid line) and (b) for the 4D map (5) with � = 0:5, � = 0:1, � = 10�3, for theordered orbit C with initial onditions x1 = 0:5, x2 = 0, x3 = 0:5, x4 = 0 (dashed line) and forthe haoti orbit D with initial onditions x1 = 3, x2 = 0, x3 = 0:5, x4 = 0 (solid line).i = 1; 2; 3; 4. The map (5) is a variant of Froeshl�e's 4D sympleti map (Froeshl�e1972). The periodi orbits of map (5) and their bifurations have been studiedby Contopoulos & Giorgilli (1988). Strutures in the phase spae of this map forsmall values of the oupling parameter � were examined in detail by Skokos et al.(1997).In the ase of the 2D map (4) we onsider the ordered orbit A with initialonditions x1 = 2; x2 = 0 and the haoti orbit B with initial onditions x1 =3; x2 = 0 for � = 0:5. The initial deviation vetors used are (1; 0) and (0; 1) forboth orbits. These vetors eventually oinide in both ases, but on ompletelydi�erent time rates. This is evident from �gure 1(a), where the SALI (whihoinides with d� for both orbits) is plotted as a funtion of the number N ofiterations, for the ordered orbit A (dashed line) and the haoti orbit B (solidline). For the ordered orbit A the SALI dereases as N inreases, following apower law and it beomes SALI � 10�13 after 107 iterations, whih means that thetwo deviation vetors almost oinide. On the other hand the SALI of the haotiorbit B dereases abruptly, reahing the limit of auray of the omputer (10�16)after about 200 iterations. After that time the two vetors are idential sine theiroordinates are represented by the same numbers in the omputer. So, it beomesevident that the SALI an distinguish between ordered and haoti motion in a 2Dmap, sine it tends to zero following ompletely di�erent time rates.In the ase of the 4D map (5) for � = 0:5, � = 0:1 and � = 10�3 we onsiderthe ordered orbit C with initial onditions x1 = 0:5, x2 = 0, x3 = 0:5, x4 = 0and the haoti orbit D with initial onditions x1 = 3, x2 = 0, x3 = 0:5, x4 = 0.The initial deviation vetors used are (1; 1; 1; 1) and (1; 0; 0; 0). As we see in �gure1(b) the SALI of the ordered orbit C (whih oinides with d�) remains almostonstant, utuating around SALI � 0:28. On the other hand, the SALI of thehaoti orbit D (whih oinides with d+) dereases abruptly reahing the limitof auray of the omputer (10�16) after about 4:7 103 iterations. After thattime the oordinates of the two vetors are represented by opposite numbers inthe omputer. So, in 4D maps the SALI tends to zero for haoti orbits, while ittends to a positive non-zero value for ordered orbits. Thus, the di�erent behaviorof SALI learly distinguish between ordered and haoti orbits.An advantage of using the ALIs in 4D maps is that usually the haoti nature
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