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eAbstra
tWe apply the re
ently introdu
ed method of the smaller alignment index (SALI) fordistinguishing between ordered and 
haoti
 orbits (Skokos 2001) in a 2-dimensional(2D) and a 4-dimensional (4D) symple
ti
 map.1 Introdu
tionThe distin
tion between ordered and 
haoti
 motion in a dynami
al system is fun-damental in a large area of modern s
ien
e. This distin
tion is parti
ularly diÆ
ultin systems with many degrees of freedom, basi
ally be
ause we 
annot visualizetheir phase spa
e. So, we need fast and a

urate tools to give us information aboutthe 
haoti
 or ordered 
hara
ter of an orbit, mainly for dynami
al systems withmore than three degrees of freedom.Many methods that try to give an answer to this problem have been devel-oped over the years. The inspe
tion of the 
onsequents of an orbit on a Poin
ar�esurfa
e of se
tion has been used extensively mainly for 2D systems. One of themost 
ommon method is the 
omputation of the maximal Lyapunov Chara
teristi
Number (LCN) (Benettin et al. 1976, Froes
hl�e 1984), whi
h 
an be applied forsystems with many degrees of freedom. Another eÆ
ient method is the frequen
ymap analysis developed by Laskar (Laskar 1990, Laskar et al. 1992). In re
entyears new methods have been developed like the study of spe
tra of \short timeLyapunov 
hara
teristi
 numbers" (Froes
hl�e et al. 1993, Lohinger et al. 1993) or\stret
hing numbers" (Voglis & Contopoulos 1994, Contopoulos et al. 1995) andthe \spe
tral distan
e" of su
h spe
tra (Voglis et al. 1999), as well as the studyof spe
tra of heli
ity and twist angles (Contopoulos & Voglis 1996, 1997, Froes
hl�e& Lega 1998). In addition Froes
hl�e introdu
ed the fast Lyapunov indi
ator (FLI)(Froes
hl�e et al. 1997) while Vozikis et al. (2000) proposed a method based on thefrequen
y analysis of \stret
hing numbers".Re
ently a new, fast and easy to 
ompute indi
ator of the 
haoti
 or orderednature of orbits, has been introdu
ed: the smaller alignment index (SALI) (Skokos2001). In the 
urrent 
ommuni
ation we re
all the de�nitions of the alignmentindi
es and show their e�e
tiveness in distinguishing between ordered and 
haoti
motion, by applying them in a 2D and a 4D symple
ti
 map.2 De�nition of the alignment indi
esLet us 
onsider the n{dimensional phase spa
e of a symple
ti
 map T, an orbit inthat spa
e with initial 
ondition P (0) = (x1(0); x2(0); : : : ; xn(0)) and a deviationve
tor �(0) = (dx1(0); dx2(0); : : : ; dxn(0)) from the initial point P (0). The evolu-tion in time of the orbit and the deviation ve
tor are given by the mapping T andthe 
orresponding tangent map as follows:P (N + 1) = TP (N)�(N + 1) = ( �T�P (N))�(N) : (1)



We note that in mappings the time is dis
rete i.e. the number N of the iterations.In order to determine if this orbit is ordered or 
haoti
 we follow the evolutionin time of two di�erent initial deviation ve
tors (e.g. �1(0), �2(0)). We de�ne asparallel alignment index, the quantity:d� � k�1(N)� �2(N)k (2)and as antiparallel alignment index, the quantity:d+ � k�1(N) + �2(N)k (3)where k � k denotes the Eu
lidean norm of a ve
tor. It is obvious from the abovede�nitions that when d� = 0 the two ve
tors 
oin
ide and when d+ = 0 the twove
tors are opposite.As explained by Voglis et al. (1999), in 2D maps the ordered motion o

urson an 1D torus, the so{
alled invariant 
urve and any two deviation ve
tors, aftera transient period, be
ome tangent to this 
urve, tending to 
oin
ide or be
omeopposite to ea
h other. This means that one of the ALIs tends to zero. A simi-lar behavior appears when the orbit tested is 
haoti
: any two deviation ve
torseventually be
ome tangent to the most unstable nearby manifold and so one ofthe ALIs tends to zero. The transient phase needed for the ve
tors to take their�nal orientation has been studied by Skokos et al. (2001) and Vozikis (2001). Ifwe 
onsider the ve
tors �1 and �2 to be normalized with norm equal to 1, the twodeviation ve
tors tend to 
oin
ide when d� ! 0 and d+ ! 2 and tend to be
omeopposite when d� ! 2 and d+ ! 0. So in 2D maps the smaller alignment index(SALI) tends to zero both for ordered and 
haoti
 orbits following however di�er-ent time rates (as it is shown in the next se
tion), whi
h allows us to distinguishbetween the two 
ases.On the other hand, in the 
ase of 4D maps the distin
tion between ordered and
haoti
 motion is even easier. In 4D maps the ordered motion o

urs on a 2Dtorus, on whi
h any initial deviation ve
tor be
omes almost tangent after a shorttransient period. In general, two di�erent initial deviation ve
tors be
ome tangentto di�erent dire
tions on the torus produ
ing di�erent sequen
es of ve
tors, so thatboth quantities d+ and d� tend to positive values in the interval (0; 2). For 
haoti
orbits any two initially di�erent deviation ve
tors tend to 
oin
ide to the dire
tionde�ned by the most unstable nearby manifold and hen
e 
oin
ide to ea
h other, orone ve
tor tends to the opposite of the other. This means than one ALI tends tozero. So, the SALI tends to zero when the orbit is 
haoti
 and to a non-zero valuewhen the orbit is ordered. Thus, the 
ompletely di�erent behavior of the SALIhelps us distinguish between ordered and 
haoti
 motion in 4D maps.3 Appli
ation of the alignment indi
esFollowing Skokos (2001) we 
ompute the ALIs in some simple 
ases of ordered and
haoti
 orbits in symple
ti
 maps with two and four dimensions. In parti
ular weuse the 2D map: x01 = x1 + x2x02 = x2 � � sin(x1 + x2) (mod 2�) (4)and the 4D map:x01 = x1 + x2x02 = x2 � � sin(x1 + x2)� �[1� 
os(x1 + x2 + x3 + x4)℄x03 = x3 + x4x04 = x4 � � sin(x3 + x4)� �[1� 
os(x1 + x2 + x3 + x4)℄ (mod 2�) (5)whi
h is 
omposed of two 2D maps of the form (4), with parameters � and �,
oupled with a term of order �. All variables are given (mod 2�), so xi 2 [��; �); for



Figure 1: The evolution of the smaller alignment index SALI, with respe
t to the number Nof iterations of the map (a) for the 2D map (4) with � = 0:5, for the ordered orbit A withinitial 
onditions x1 = 2; x2 = 0 (dashed line) and for the 
haoti
 orbit B with initial 
onditionsx1 = 3; x2 = 0 (solid line) and (b) for the 4D map (5) with � = 0:5, � = 0:1, � = 10�3, for theordered orbit C with initial 
onditions x1 = 0:5, x2 = 0, x3 = 0:5, x4 = 0 (dashed line) and forthe 
haoti
 orbit D with initial 
onditions x1 = 3, x2 = 0, x3 = 0:5, x4 = 0 (solid line).i = 1; 2; 3; 4. The map (5) is a variant of Froes
hl�e's 4D symple
ti
 map (Froes
hl�e1972). The periodi
 orbits of map (5) and their bifur
ations have been studiedby Contopoulos & Giorgilli (1988). Stru
tures in the phase spa
e of this map forsmall values of the 
oupling parameter � were examined in detail by Skokos et al.(1997).In the 
ase of the 2D map (4) we 
onsider the ordered orbit A with initial
onditions x1 = 2; x2 = 0 and the 
haoti
 orbit B with initial 
onditions x1 =3; x2 = 0 for � = 0:5. The initial deviation ve
tors used are (1; 0) and (0; 1) forboth orbits. These ve
tors eventually 
oin
ide in both 
ases, but on 
ompletelydi�erent time rates. This is evident from �gure 1(a), where the SALI (whi
h
oin
ides with d� for both orbits) is plotted as a fun
tion of the number N ofiterations, for the ordered orbit A (dashed line) and the 
haoti
 orbit B (solidline). For the ordered orbit A the SALI de
reases as N in
reases, following apower law and it be
omes SALI � 10�13 after 107 iterations, whi
h means that thetwo deviation ve
tors almost 
oin
ide. On the other hand the SALI of the 
haoti
orbit B de
reases abruptly, rea
hing the limit of a

ura
y of the 
omputer (10�16)after about 200 iterations. After that time the two ve
tors are identi
al sin
e their
oordinates are represented by the same numbers in the 
omputer. So, it be
omesevident that the SALI 
an distinguish between ordered and 
haoti
 motion in a 2Dmap, sin
e it tends to zero following 
ompletely di�erent time rates.In the 
ase of the 4D map (5) for � = 0:5, � = 0:1 and � = 10�3 we 
onsiderthe ordered orbit C with initial 
onditions x1 = 0:5, x2 = 0, x3 = 0:5, x4 = 0and the 
haoti
 orbit D with initial 
onditions x1 = 3, x2 = 0, x3 = 0:5, x4 = 0.The initial deviation ve
tors used are (1; 1; 1; 1) and (1; 0; 0; 0). As we see in �gure1(b) the SALI of the ordered orbit C (whi
h 
oin
ides with d�) remains almost
onstant, 
u
tuating around SALI � 0:28. On the other hand, the SALI of the
haoti
 orbit D (whi
h 
oin
ides with d+) de
reases abruptly rea
hing the limitof a

ura
y of the 
omputer (10�16) after about 4:7 103 iterations. After thattime the 
oordinates of the two ve
tors are represented by opposite numbers inthe 
omputer. So, in 4D maps the SALI tends to zero for 
haoti
 orbits, while ittends to a positive non-zero value for ordered orbits. Thus, the di�erent behaviorof SALI 
learly distinguish between ordered and 
haoti
 orbits.An advantage of using the ALIs in 4D maps is that usually the 
haoti
 nature



of an orbit 
an be established beyond any doubt. This happens be
ause when theorbit under 
onsideration is 
haoti
, the SALI be
omes equal to zero, in the sensethat it rea
hes the limit of the a

ura
y of the 
omputer. After that time thetwo deviation ve
tors are identi
al (equal or opposite), sin
e their 
oordinates arerepresented by the same or opposite numbers in the 
omputer. Thus they haveexa
tly the same evolution in time and 
annot be separated.A more detailed study of the ALIs and the SALI for several symple
ti
 mapsand a 
omparison with other methods that try to determine the ordered or 
haoti
nature of an orbit is given in Skokos (2001).A
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