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Abstract

We apply the recently introduced method of the smaller alignment index (SALI) for
distinguishing between ordered and chaotic orbits (Skokos 2001) in a 2-dimensional
(2D) and a 4-dimensional (4D) symplectic map.

1 Introduction

The distinction between ordered and chaotic motion in a dynamical system is fun-
damental in a large area of modern science. This distinction is particularly difficult
in systems with many degrees of freedom, basically because we cannot visualize
their phase space. So, we need fast and accurate tools to give us information about
the chaotic or ordered character of an orbit, mainly for dynamical systems with
more than three degrees of freedom.

Many methods that try to give an answer to this problem have been devel-
oped over the years. The inspection of the consequents of an orbit on a Poincaré
surface of section has been used extensively mainly for 2D systems. One of the
most common method is the computation of the maximal Lyapunov Characteristic
Number (LCN) (Benettin et al. 1976, Froeschlé 1984), which can be applied for
systems with many degrees of freedom. Another efficient method is the frequency
map analysis developed by Laskar (Laskar 1990, Laskar et al. 1992). In recent
years new methods have been developed like the study of spectra of “short time
Lyapunov characteristic numbers” (Froeschlé et al. 1993, Lohinger et al. 1993) or
“stretching numbers” (Voglis & Contopoulos 1994, Contopoulos et al. 1995) and
the “spectral distance” of such spectra (Voglis et al. 1999), as well as the study
of spectra of helicity and twist angles (Contopoulos & Voglis 1996, 1997, Froeschlé
& Lega 1998). In addition Froeschlé introduced the fast Lyapunov indicator (FLI)
(Froeschlé et al. 1997) while Vozikis et al. (2000) proposed a method based on the
frequency analysis of “stretching numbers”.

Recently a new, fast and easy to compute indicator of the chaotic or ordered
nature of orbits, has been introduced: the smaller alignment index (SALI) (Skokos
2001). In the current communication we recall the definitions of the alignment
indices and show their effectiveness in distinguishing between ordered and chaotic
motion, by applying them in a 2D and a 4D symplectic map.

2 Definition of the alignment indices

Let us consider the n—dimensional phase space of a symplectic map T, an orbit in
that space with initial condition P(0) = (x1(0), 22(0),..., ,(0)) and a deviation
vector £(0) = (dz1(0), dxo(0),..., dz,(0)) from the initial point P(0). The evolu-
tion in time of the orbit and the deviation vector are given by the mapping T and
the corresponding tangent map as follows:

P(N+1) = TP(N)
eN+1) = GELew) (1)

OP(N)



We note that in mappings the time is discrete i.e. the number N of the iterations.
In order to determine if this orbit is ordered or chaotic we follow the evolution
in time of two different initial deviation vectors (e.g. &;(0), £(0)). We define as
parallel alignment index, the quantity:

d- = [&(N) = &V (2)
and as antiparallel alignment index, the quantity:

dy = [&(N) + &N (3)
where || - || denotes the Euclidean norm of a vector. It is obvious from the above
definitions that when d_ = 0 the two vectors coincide and when d; = 0 the two

vectors are opposite.

As explained by Voglis et al. (1999), in 2D maps the ordered motion occurs
on an 1D torus, the so—called invariant curve and any two deviation vectors, after
a transient period, become tangent to this curve, tending to coincide or become
opposite to each other. This means that one of the ALIs tends to zero. A simi-
lar behavior appears when the orbit tested is chaotic: any two deviation vectors
eventually become tangent to the most unstable nearby manifold and so one of
the ALIs tends to zero. The transient phase needed for the vectors to take their
final orientation has been studied by Skokos et al. (2001) and Vozikis (2001). If
we consider the vectors & and & to be normalized with norm equal to 1, the two
deviation vectors tend to coincide when d_ — 0 and d; — 2 and tend to become
opposite when d_ — 2 and dy — 0. So in 2D maps the smaller alignment index
(SALI) tends to zero both for ordered and chaotic orbits following however differ-
ent time rates (as it is shown in the next section), which allows us to distinguish
between the two cases.

On the other hand, in the case of 4D maps the distinction between ordered and
chaotic motion is even easier. In 4D maps the ordered motion occurs on a 2D
torus, on which any initial deviation vector becomes almost tangent after a short
transient period. In general, two different initial deviation vectors become tangent
to different directions on the torus producing different sequences of vectors, so that
both quantities d; and d_ tend to positive values in the interval (0, 2). For chaotic
orbits any two initially different deviation vectors tend to coincide to the direction
defined by the most unstable nearby manifold and hence coincide to each other, or
one vector tends to the opposite of the other. This means than one ALI tends to
zero. So, the SALI tends to zero when the orbit is chaotic and to a non-zero value
when the orbit is ordered. Thus, the completely different behavior of the SALI
helps us distinguish between ordered and chaotic motion in 4D maps.

3 Application of the alignment indices

Following Skokos (2001) we compute the ALIs in some simple cases of ordered and
chaotic orbits in symplectic maps with two and four dimensions. In particular we
use the 2D map:

Ty = T1+ T2
xh = w9 —vsin(z + x9)

(mod 2) (4)

and the 4D map:

Ty =21+ T
xh =x9 —vsin(zry; + x3) — p[l — cos(zy + xo + 3 + 24)]
T3 = X3 + x4
T = x4 — Kksin(zs + x4) — p[l — cos(xy + xo + x3 + 14)]

(mod 27)  (5)

which is composed of two 2D maps of the form (4), with parameters v and &,
coupled with a term of order p. All variables are given (mod 27), so z; € [—7, ), for
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Figure 1: The evolution of the smaller alignment index SALI, with respect to the number N
of iterations of the map (a) for the 2D map (4) with v = 0.5, for the ordered orbit A with
initial conditions z; = 2, 2 = 0 (dashed line) and for the chaotic orbit B with initial conditions
x1 = 3, x5 = 0 (solid line) and (b) for the 4D map (5) with v = 0.5, kK = 0.1, u = 1073, for the
ordered orbit C with initial conditions z; = 0.5, 2o = 0, z3 = 0.5, 24 = 0 (dashed line) and for
the chaotic orbit D with initial conditions z1 = 3, z2 = 0, 23 = 0.5, x4 = 0 (solid line).

i=1,2,3,4. The map (5) is a variant of Froeschlé’s 4D symplectic map (Froeschlé
1972). The periodic orbits of map (5) and their bifurcations have been studied
by Contopoulos & Giorgilli (1988). Structures in the phase space of this map for
small values of the coupling parameter y were examined in detail by Skokos et al.
(1997).

In the case of the 2D map (4) we consider the ordered orbit A with initial
conditions z; = 2, xs = 0 and the chaotic orbit B with initial conditions z; =
3, x3 = 0 for v = 0.5. The initial deviation vectors used are (1,0) and (0,1) for
both orbits. These vectors eventually coincide in both cases, but on completely
different time rates. This is evident from figure 1(a), where the SALI (which
coincides with d_ for both orbits) is plotted as a function of the number N of
iterations, for the ordered orbit A (dashed line) and the chaotic orbit B (solid
line). For the ordered orbit A the SALI decreases as N increases, following a
power law and it becomes SALI ~ 10~'3 after 107 iterations, which means that the
two deviation vectors almost coincide. On the other hand the SALI of the chaotic
orbit B decreases abruptly, reaching the limit of accuracy of the computer (10719)
after about 200 iterations. After that time the two vectors are identical since their
coordinates are represented by the same numbers in the computer. So, it becomes
evident that the SALI can distinguish between ordered and chaotic motion in a 2D
map, since it tends to zero following completely different time rates.

In the case of the 4D map (5) for » = 0.5, k = 0.1 and p = 10™* we consider
the ordered orbit C with initial conditions x; = 0.5, x5 = 0, 23 = 0.5, x4 = 0
and the chaotic orbit D with initial conditions z; = 3, x5 = 0, z3 = 0.5, x4 = 0.
The initial deviation vectors used are (1,1,1,1) and (1,0,0,0). As we see in figure
1(b) the SALI of the ordered orbit C (which coincides with d_) remains almost
constant, fluctuating around SALI ~ 0.28. On the other hand, the SALI of the
chaotic orbit D (which coincides with d,) decreases abruptly reaching the limit
of accuracy of the computer (107'%) after about 4.7 10% iterations. After that
time the coordinates of the two vectors are represented by opposite numbers in
the computer. So, in 4D maps the SALI tends to zero for chaotic orbits, while it
tends to a positive non-zero value for ordered orbits. Thus, the different behavior
of SALI clearly distinguish between ordered and chaotic orbits.

An advantage of using the ALIs in 4D maps is that usually the chaotic nature



of an orbit can be established beyond any doubt. This happens because when the
orbit under consideration is chaotic, the SALI becomes equal to zero, in the sense
that it reaches the limit of the accuracy of the computer. After that time the
two deviation vectors are identical (equal or opposite), since their coordinates are
represented by the same or opposite numbers in the computer. Thus they have
exactly the same evolution in time and cannot be separated.

A more detailed study of the ALIs and the SALI for several symplectic maps
and a comparison with other methods that try to determine the ordered or chaotic
nature of an orbit is given in Skokos (2001).
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